Friday, September 24, 2021

Russell - Đưa vào Triết học Toán học (03)

Đưa vào Triết học Toán học

(Introduction to Mathematical Philosophy)

 Bertrand Russell 

 (←...tiếp theo)

 

 

CHƯƠNG VII:

Những số Hữu tỉ, số Thực và số Phức

 

Bây giờ chúng ta đã thấy cách định nghĩa những số thứ tự, và cũng cả những số-quan hệ, trong đó những gì thường được gọi là những số thứ tự là một loài đặc biệt [1]. Sẽ thấy rằng mỗi loại này của số có thể là vô hạn cũng như hữu hạn. Nhưng cả hai, trong điều kiện hiện tại của chúng, đều không có khả năng của những mở rộng quen thuộc hơn của ý tưởng về số, đó là muốn nói, những mở rộng đến những số âm, phân số, số vô tỉ và số phức. Trong chương này, chúng ta sẽ vắn tắt cung cấp những định nghĩa lôgích của những mở rộng khác nhau này.

Thursday, September 9, 2021

Russell - Đưa vào Triết học Toán học (02)

Introduction to Mathematical Philosophy

Đưa vào Triết học Toán học

 Bertrand Russell 


(←...tiếp theo)

 

 


CHƯƠNG IV:

Định Nghĩa Của Thứ Bậc

 

Bây giờ chúng ta đã thực hiện phân tích của chúng ta về chuỗi của những số tự nhiên đến điểm ở đó chúng ta đã có được những định nghĩa lôgích về những phần tử của chuỗi này, của lớp toàn bộ của những phần tử của nó và của sự liên quan của một số với số tiếp sau trực tiếp của nó. Bây giờ chúng ta phải xem xét đặc tính nối tiếp [1] của những số tự nhiên trong thứ bậc 0, 1, 2, 3, … Thông thường, chúng ta nghĩ về những số theo thứ bậc [2] này và đó là một phần thiết yếu của công việc phân tích dữ liệu của chúng ta để tìm một định nghĩa về “thứ bậc” hay “chuỗi” theo những thuật ngữ lôgích.[3]